A DFT STUDY ON ZIRCONIA OLIGOMERS AND THE INFLUENCE OF CU-DOPING. Bárbara Herrera^a, Francisco Gracia^b, Paulo Araya^b and Alejandro Toro-Labbé^a ^aQTC, Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago 6094411, Chile. ^bDepartamento de Ingeniería Química, Centro de Investigación Interdisciplinaria Avanzada de Ciencias de Materiales(CIMAT), Universidad de Chile, Av. Blanco Encalada 2008, Santiago, Chile. atola@uc.cl A theoretical study of Zirconia-based linear oligomers (ZrO₂) $_n$ (n=1-5) has been performed in order to compare its intrinsic reactivity with the number of ZrO₂ units and the adsorption of Cu atoms. DFT-based indexes such as chemical potential (μ), hardness (η), Fukui (FF) and the dual Fukui (DF) functions were used with the aim of characterize the intrinsic reactivity on the studied clusters. B3LYP/6-31G** calculations with Lanl2dz pseudopotentials on metallic centers indicate that the ability to charge transfer and reactivity increases with the number of ZrO₂ units. The Fukui function and the dual Fukui descriptor indicates that the nucleophilic character resides at the oxygen atoms and the electrophilic character is centered at Zr atoms. $Cu(ZrO_2)$ and $Cu(ZrO_2)_2$ clusters were analyzed and compared to (ZrO_2) and $(ZrO_2)_2$, it is found that while the nucleophilic character resides at Cu atoms being larger than at copper-free clusters, the electrophilic character remains centered at the Zr atoms. **Figure1:** Cu(ZrO₂)₂ Cluster. This work was supported by FONDECYT through project No. 1060590, and Proyecto Bicentenario en Ciencias y Tecnología de Inserción en la Academia (PBCT#8). The authors also wish to thank MECESUP through projects PUC-0004 and Red Química UCH-0116.