NANOCOMPOSITE Ta-,Ti-SiN THIN FILMS: SYNTHESIS, PROPERTIES, AND APPLICATIONS IN HIGH TEMPERATURE ELECTRONICS

A.V. Kuchuk, V.P. Kladko, and A. Piotrowska¹
V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine,
Pr. Nauky 41, 03028 Kyiv, Ukraine

¹Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
E-mail: kuchuk@isp.kiev.ua

Studies of the thin films of the type transition metal (Ta, Ti, W, Mo)-silicon-nitrogen have both scientifically interesting and practically useful [1-3]. A major interest has an application in the areas of aerospace, automobile, high temperature/power electronics, micro-electromechanics etc. The exceptional combination of properties, like a high melting point, good chemical stability, high electric conductivity, excellent diffusion barrier performance and hardness, makes them a widely used. However, those properties depending on many factors: a) fabrication technologies; b) chemical composition; c) structure-property relationships; d) post-deposition treatment etc. Therefore, in this work, we have investigated the effect of deposition parameters and post-deposition heat treatment on the material properties, and performance of Ta(Ti)-Si-N diffusion barriers in Au-based metallization of GaAs or GaN.

Binary Ta-,Ti-Si and ternary Ta-,Ti-SiN thin films were prepared by reactive RF (13,56 MHz) magnetron sputtering of Ta₅Si₃ (P = 200 W) and Ti₅Si₃ (P = 450 W) targets, in a pure Ar and various Ar/N₂ gaseous mixture, respectively. To determine the properties of investigated films, structures of the type Ta-,Ti-SiN/GaAs(GaN) and with Au-overlayer was prepared. In order to characterize the thermal stability, the samples were annealed up to 1000°C for 3-5 min. in Ar ambient. The chemical and phase composition, electrical resistivity, mechanical stress, microstructure, surface morphology as well as diffusion barrier performances have been investigated using four-point probe sheet resistance measurements, stress measurement optical system, X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), Rutherford backscattering spectrometry (RBS), transmission electron, and atomic force- microscopy (TEM, AFM).

For reactive sputtering of Ta-,Ti-SiN thin films, increasing of N₂/Ar flow ratio from 0 to 10%, results in increases of the N concentration into the films, electrical resistivity and change of mechanical stress (Table) [4]. These effects may be explained by incorporation of reactive nitrogen into the film during the sputtering process, and change of films microstructure. Indeed, all Ta-,Ti-Si films in the as-deposited state, exhibit broad X-ray diffraction "halo" characteristic of an amorphous material [5]. With increasing nitrogen content into the films, the position of the diffraction peak shifts to low angles and peak with at half maximum increase, indicating a structural differences in the amorphous state of the films [5]. These results indicating a change of the shot-range order of the Ta, Ti and Si atoms, due to the N suppression the reaction between Ta, Ti and Si atoms, by passivating the Ta-, Tisilicides grain boundary with N atoms. Increase of the "degree of amorphism", which agrees well with change of chemical composition and an increase of Ta-,Ti-SiN films resistivity, is result of silicon nitride SiN_x (nonconducting/amorphous) fraction rises into the films, and of transition metal nitride TaN_x or TiN_x (conducting/polycrystalline) decreases. Nanocomposite Ta-,Ti-SiN films may be viewed as a mixture of transition metal nitride imbedded in a silicon nitride amorphous matrix. This model explains the structure-property relationships and high temperature crystallization (1000°C) of optimal Ta-,Ti-SiN thin-film diffusion barriers [6].

As shown in Fig. 1 and 2, the optimal amorphous Ta-,Ti-SiN diffusion barriers have excellent thermal stability (up to 800° C) preventing the metallurgical interaction in Au/Ti₂₆Si₁₇N₅₇/Au/Pd/GaN and Au/Ta₃₄Si₂₅N₄₁/GaN contact structures.

This work was partially supported by the NATO, under the grant No. NUKR.RIG-981275.

References:

- [1] M.-A. Nicolet, P.H. Giauque, Microelectronic Engineering, **55** (2001) 357.
- [2] M.-A. Nicolet, Vacuum, **59** (2000) 716.
- [3] H. Zeman, J. Musil, P. Zeman, J. Vac. Sci. Technol. A, 22 (2004) 646.
- [4] A.V. Kuchuk, J. Ciosek, A. Piotrowska et al., Vacuum, 74 (2004) 195.
- [5] A.V. Kuchuk, V.P. Kladko, V.F. Machulin et al., Metal Physics and Advanced Technologies, **27** (2005) 625.
- [6] A.V. Kuchuk, E. Kaminska, A. Piotrowska et al., Thin Solid Films, 459 (2004) 292.

Figures:

Table. Chemical composition, electrical resistivity, mechanical stress and phase composition of reactively sputtered Ta-,Ti-SiN thin films, in dependences of nitrogen content in sputtering plasma

N ₂ /Ar	Composition (at.%)		Resistivity (μΩcm)		Stress (GPa)		Structure
%	Ta-Si-N	Ti-Si-N	Ta-SiN	Ti-SiN	TaSiN	TiSiN	(by XRD)
0	Ta ₆₇ Si ₃₃	$Ti_{62}Si_{28}$	295	312	-1.0	-0.7	nanocrystalline
4	_	$Ti_{27}Si_{20}N_{53}$	_	1012	_	-1.3	amorphous
5	$Ta_{53}Si_{20}N_{27}$		359	ı	-1.5	ı	amorphous
8	$Ta_{40}Si_{24}N_{36}$	$Ti_{26}Si_{17}N_{57}$	416	7527	-1.1	-1.4	amorphous
10	Ta ₃₄ Si ₂₅ N ₄₁	$Ti_{25}Si_{16}N_{59}$	810	26600	-1.1	-1.4	amorphous

Fig. 1. The 2 MeV He⁺ RBS spectra from as-deposited and annealed up to 800°C (Ar/3min) contact structure p-GaN/Pd/Au/Ti₂₆Si₁₇N₅₇/Au.

Thickness of the films:

Pd - 20nm;

Au - 130nm;

Ti₂₆Si₁₇N₅₇ - 100nm;

Au-overlayer - 100nm.

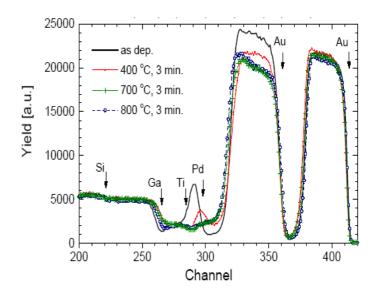
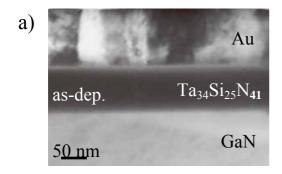
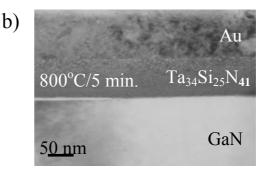




Fig. 2. Cross-sectional TEM micrographs of the $GaAs/Ta_{34}Si_{25}N_{41}/Au$ samples: (a) asdeposited; (b) annealed at $800^{\circ}C$ in Ar ambient for 5 min.

