
Poster 

TNT2006                                         04-08 September, 2006                              Grenoble-France 

 
RF PERFORMANCE OF MULTIPLE-CHANNEL CARBON NANOTUBE 

TRANSISTORS 
 

Kaoru Narita, Hiroo Hongo, and Masahiko Ishida, Fumiyuki Nihey
NEC Fundamental and Environmental Research Laboratories, 

34, Miyukigaoka, Tsukuba, Ibaraki, 305-8501, Japan 
nihey@cd.jp.nec.com 

 

Carbon nanotube field effect transistors (CNTFETs) are high-mobility devices and 
expected to operate at very high-speed. Theoretical analyses suggest that the cutoff frequency 
(fT) of an ideal CNTFET is from 800 MHz to 1.3 THz when the gate length is 0.1 µm [1][2]. 
However, measuring the RF performance of CNTFETs, especially their cutoff frequencies, is 
generally difficult because their output impedances (∼105 Ω) are high enough compared with 
the impedance (50 Ω) of the measurement system using the network analyzer. This large 
mismatch hinders us from measuring accurate S-parameters and determining the cutoff 
frequencies of the devices. In this paper, we show the successful results of measuring the RF 
performance of CNTFETs. This was achieved by a newly developed multiple channel 
CNTFET structure whose output impedance is much lower than the usual single channel 
CNTFET, and a de-embedding scheme that removes existing errors in measured S-parameters. 

As shown in Fig.1, the evaluated CNTFET was fabricated on SiO2 insulator on the high-
resistive Si substrate. By the CVD method, approximately 200 CNT channels were grown 
from catalyst (Fe) islands that were patterned by electron-beam lithography. The gate oxide 
was SiO2 with the thickness of 40 nm. The top gate structure (L=0.2 µm) was used to reduce 
parasitic capacitances. The drain and source electrodes were formed by evaporation of Au, 
and made ohmic contacts with CNT channels. Using high-frequency probes, 2-port S-
parameters of the device were measured by the network analyzer. Even using the multiple 
channel structure, the device impedance was still higher compared with usual RF transistors. 
Therefore, we applied the calibration method with which the parasitic error matrix can be 
effectively eliminated and the S-parameters of only the transistor part can be extracted using 
open-short-through standards on wafer (Fig.2). 

Resulting current gain (|h21|) and power gain (maximum stable gain) as a function of 
frequencies are shown in Fig.3. Determined cutoff frequency is 10.3 GHz, and the maximum 
stable gain is +3.8 dB at 10 GHz. These values are ones of the highest among the previously 
published papers[3][4][5]. To verify consistencies, we analyzed an equivalent small-signal 
circuit model of the CNTFET (Fig.4). From this model, the cutoff frequency was derived and 
approximately represented as; 
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gm’ and gm are measured and intrinsic transconductance respectively. Cg is gate capacitance 
which consists of gate-CNT capacitance (Cg-cnt) and parasitic capacitance between the gate 
and source (or drain) electrodes (Cgs + Cgd).  gm’ is obtained by DC measurement, Cg-cnt 
can be calculated by the theoretical concern[1] and Cgs + Cgd can be estimated by the 
geometry. It was found that our result of fT is quite reasonable value when we substitute gm’ = 
226 µS, Cg-cnt = 1.2 fF and Cgs + Cgd = 2.2 fF into the above formula (fT[model]=10.6GHz). 
This implies that the equivalent circuit model is appropriate, in addition, the device RF 
performance can be considerably improved by increasing gm’ and reducing parasitic 
capacitance and resistance of the device in the future study. 
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Fig.1:  Multiple channel CNTFET structure 
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Fig.2: Parasitic errors and de-embedding standards 
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