TEMPERATURE AND VOLTAGE TMR DEPENDENCIES FOR HIGH PERFORMANCE MAGNETIC JUNCTIONS

H. Silva ${ }^{1,2}$, Y. Pogorelov ${ }^{1}$
${ }^{1}$ IFIMUP-IN, Universidade do Porto, Porto 4169-007, Portugal ${ }^{2}$ CEOT, Universidade do Algarve, Faro 8005-139, Portugal
huggsil@gmail.com

Recent spintronics magnetic junctions with ultra-thin MgO barriers attained as high tunnel magnetoresistance (TMR) as $\sim 600 \%$ [1] at room temperature which makes them ideal for non-volatile high-density memories. Amazingly, TMR even reached $\sim 1200 \%$ at low temperatures, but it can be also sensibly degraded with voltage [2], hence a detailed study of its temperature and voltage dependencies is fundamental for future device applications.

For nano-size junctions, a fully quantum description is required to take a proper account of specific coherency effects. The commonly used Green's functions in the Kubo formula framework [3] are not easy enough to include the electrical field (E) effect in an analytic way [4]. Here a tight-binding dynamics [5] is generalized to describe this effect on the spin-dependent quantum transmission for magnetic junctions with ultrathin non-magnetic spacers. Starting from the n-site atomic chain with on-site energies ε_{0}, locally shifted under E, and nearest-neighbour hopping amplitudes t, we write down the Hamiltonian in terms of local Fermi operators \hat{c}_{l} and \hat{c}_{l}^{\top} as:

$$
\begin{equation*}
H=\sum_{l=1}^{n}\left(\varepsilon_{0}-l E^{\prime}\right) \hat{c}_{l}^{\dagger} \hat{c}_{l}+t \sum_{l=1}^{n-1}\left(\hat{c}_{l}^{\dagger} \hat{c}_{l+1}+\hat{c}_{l+1}^{\dagger} \hat{c}_{l}\right) \tag{1}
\end{equation*}
$$

and obtain the local (non-normalized) amplitudes for the eigen-state with energy ε as:

$$
\begin{equation*}
p_{l}(x)=\xi^{l} \sum_{j=0}^{[l / 2]} C_{i}^{l-j}\left(-\xi^{2}\right)^{-j}(j+x / \xi)_{l-2 j} \tag{2}
\end{equation*}
$$

where $x=\left(\varepsilon-\varepsilon_{0}\right) / t, \xi=E / t, C_{m}{ }^{n}$ is the binomial coefficient, $[u]$ is the entire part of u, and $(u)_{n}=u(u+1) \ldots(u+n-1)$ is the Pochhammer symbol. Next this finite chain (called the gate, g) is attached to semi-infinite chains (source, s, and drain, d), with respective on-site energies $\varepsilon_{s}, \varepsilon_{d}$ and hopping parameters (see Fig. 1, supposing that the electrical voltage drop between the sites in s, d elements is negligible), to generate a collective electronic state with energy ε. This defines the 1D transmission coefficient (spin-dependent through the Stoner shifts in $\varepsilon_{s}, \varepsilon_{d}$) for given electrical field as $T(\varepsilon)=$ $-2 i\left(t_{s g} t_{d}\left|\gamma_{s}\right| \sin q_{s}\right) /\left(t_{s} t_{g d} D\right)$ where the characteristic denominator:

$$
\begin{equation*}
D=\varphi\left[p_{n}\left(x_{g}\right)-p_{n-1}\left(x_{g}+\xi\right) \gamma_{s}\right]-p_{n-1}\left(x_{g}\right) \gamma_{d}+p_{n-2}\left(x_{g}+\xi\right) \gamma_{s} \gamma_{d} \tag{3}
\end{equation*}
$$

with $q_{i}=\arccos \left[\left(\varepsilon-\varepsilon_{i}\right) / 2 t_{i}\right], \varphi=1+(n+1) \xi \mathrm{e}^{i q_{d}}, \gamma_{i}=\mathrm{e}^{i q_{i}} t_{g i}{ }^{2} /\left(t_{g} t_{i}\right)$ for $i=s, d$ and $x_{g}=$ ($\left.\varepsilon-\varepsilon_{g}\right) / t_{g}$, allows for up to n resonance spikes in the Landauer conductance formula. Its 3D generalized and temperature dependent form reads as

$$
G=\left(e^{2} / h\right) \sum_{\boldsymbol{k}} f_{s}(\boldsymbol{k})\left[1-f_{d}(\boldsymbol{k})\right]|T(\boldsymbol{k})|^{2},
$$

with the Fermi function $f_{i}(\boldsymbol{k})=\left\{\exp \left[\beta\left(\varepsilon_{i}(\boldsymbol{k})-\mu_{i}\right)\right]+1\right\}^{-1}$ for a dispersion law $\varepsilon_{i}(\boldsymbol{k})$, chemical potential $\mu_{i}(i=s, d)$ and inverse temperature β. The calculated behaviour for a characteristic choice of model parameters (Fig. 2) shows an intriguing possibility of further enhancement of TMR efficiency by a proper choice of applied voltage on the quantum coherent device, as an alternative/addition to the previously suggested adjustment of its elemental composition [5]. Moreover, this voltage effect proves to be temperature stable, permitting to compensate the common temperature degradation of TMR.

References:

[1] S. Ikeda, J. Hayakawa, Y. Lee, K. Miura, H. Hasegawa, F. Matsukura, H. Ohno, "Intermag Europe 2008"
[2] S. Yuasa, A. Fukushima, H. Kubota, Y. Suzuki, K. Ando, Appl. Phys. Lett 89, 042505 (2006).
[3] J. Mathon, M. Villeret, H. Itoh, Phys. Rev. B 52, R6983 (2005).
[4] C. Heiliger, P. Zahan, B. Yavorsky and I. Mertig, Phys. Rev. B 72, 180406(R) (2005).
[5] H. G. Silva and Yu. G. Pogorelov, arXiv:0802.1436v1 [cond-mat.mtrl-sci].

Figures:

Fig. 1 - On-site amplitudes, hopping parameters, and spatial distribution of electrical voltage in the composite chain system.

Fig. 2 - 1D transmission coefficient $|T|^{2}$ (at zero temperature) of the composite chain system with parameters $\varepsilon_{s}=-0.5 \mathrm{eV}, \varepsilon_{d}=-1.0 \mathrm{eV}, \varepsilon_{g}=0.2 \mathrm{eV}\left(\varepsilon_{\mathrm{F}}=0\right), t_{s}$ $=t_{d}=0.5 \mathrm{eV}, t_{g}=t_{s g}=t_{g d}=0.25 \mathrm{eV}$ and $N_{g}=4$ (number of planes) in function of the bias voltage.

