

An old material in the nanoworld: organic-inorganic hybrid nanotubes based on γ -Titanium phosphate layered crystal structure

Jesús A. Blanco Departamento de Física, Universidad de Oviedo, Spain Sergei A. Khainakov, Olena Khainakova, and José Rubén García Departamento de Orgánica e Inorganica, Universidad de Oviedo, Spain Santiago García-Granda

Departamento de Química-Física y Analítica, Universidad de Oviedo, Spain

Outline:

- Introduction to Ti-phosphates & inorganic nanotubes.
- Synthesis of organic-inorganic hybrid γ-titanium phosphates/trioctylamine nanotubes (γ-TiP-TOA-N).
- Morphology and structural characterization (SEM, TEM, and XRD) of γ -TiP-TOA-N .
- Mechanism for interpreting the formation of γ -TiP-TOA-N.
- Conclusions.

Introduction to Ti-phosphates & inorganic nanotubes :

- Aluminosilicate zeolites→ion-exchange, separation, catalysis areas.
 - Open-framework materials
 → Most abundant multifunctional porous materials.
- Nanotubes→Interest in low-dimensional materials
 - Using high-temperature process→nanotubes of metals, metal chalcogenides, metal oxides, BN,.

Introduction to Ti-phosphates & inorganic nanotubes :

Two forms of layered Ti phosphate: α -TiP and γ -TiP based on tetrahedral PO₄ & octahedral TiO₆ units—T-O-T

$(C_6H_{13}NH_3)$ [Ti(HPO₄)(PO₄)]·H₂O

Introduction to Ti-phosphates & inorganic nanotubes

Table 1. Crystal Data of (C₆H₁₃NH₃)[Ti(HPO₄)(PO₄)]·H₂O

C6NH19TiP2O9
359.11
monoclinic
P21 (no. 4)
5.089(2)
6.335(2)
22.792(5)
102.48(2)
2
0.200
0.227
0.210
5.8

Mechanism of interacalation of n-alkylamines
P-OH groups tendency to interact with amine ones

Synthesis of organic-inorganic hybrid γtitanium phosphates/trioctylamine nanotubes (γ-TiP-TOA-N).

1) TOA + acetone + phosphoric acid \rightarrow microemulsion of TOA/H₃PO₄ + drops Tibutoxide

2) 13.1 ml TOA + 60 ml acetone + 1 ml H_3PO_4 (85%).

3) Autoclave and sealed at 140°C for 3 days + centrifugation + air drying

γ-TiP-TOA-N +... γ-TiP γ-TiP-EA γ-TiP-HA

Morphology and structural characterization XRD experiments

Morphology and structural characterization: XRD experiments

 $2\theta_{(001)}$ is shifted to low- $2\theta \rightarrow$ cell parameter c increases (intercalation of the amines)

•Extremely small and highly disorded crystallites

Morphology and structural characterization SEM of γ-TiP-TOA-N

- Irregular round flakes
- No paint-brushes morphology

7μm

Morphology and structural characterization TEM of $\gamma\text{-}TiP\text{-}TOA\text{-}N$

200nm

— 20 nm

Morphology and structural characterization TEM of γ-TiP-TOA-N

Mechanism for interpreting the formation of γ -TiP-TOA-N

Conclusions:

- The formation of open-ended cylindric nanotubes of γ -TiP-TOA is governed by:
 - Interaction \rightarrow Nitrogen of TOA <> Hydrogen of γ -TiP
 - Pseudo-conical geometry of TOA molecule + length of alkyl chain & amine amount → the interlayer distance of inorganic layer.
- Future perspectives: new Fe-based phosphate nanotubes