

Authors: Ken Reynolds, P. Lovera, D. lacopino, H. Doyle, A. O'Riordan, G. Redmond.

Nanotechnology Group

Tyndall National Institute, Ireland.

Manipulation, Assembly & Characterization of Optically Functional 1-D Organic Nanostructures.

ndall

1-D Nanostructures

Inorganic 1-D Nanostructures

Organic 1-D Nanostructures

lature

- Inorganic 1-dimensional (1-D) nanostructures have been developed for next generation nanoelectronic and nanophotonics - IBM, Intel, NASA, university labs.
- Recent interest in developing functional organic 1-D nanostructures because of highly tunable electronic and optical properties of organics.
- Controlled, high-yield assembly routes are required for viable 1-D nanodevices.

Bottom-up Assemblies: State of the Art

Probe

40 mm

Langmuir-Blodgett • www.tyndall.ie/nanotech

S

Organic Nanostructure Synthesis

- Poly(9,9-dioctylfluorenyl-2,7-diyl) a blue emitter
- Thermal & chemical stability.
- High PL quantum efficiencies (50 70 %)
 - Chemically tunable emission.

 $\mathbf{R}=\mathbf{C}_{\mathbf{8}}\mathbf{H}_{\mathbf{17}}$

Nanowires synthesized by solution

wetting template method.

10 µm

- Cylindrical. Nanowire shape:
- Nanowire diameters: 20 400 nm.
- Nanowire length:
- Nanowire yield:
- ~ 15 µm
- ~ 10%.

• www.tyndall.ie/nanotech

Custom built Probe System

* in collaboration with Dr. Marko Pudas, University of Oulu, Finland & NanoGalex Ltd.

memory control co * Publication arising from this work submitted to Nanotechnology. ഗ

11 - 12 - 14 - 14 - 14 - 14 - 14 - 14 -	2		
		lieb	annih an
		Y None	
	F	-	
	3.0		

anipulation of Inorganic Nanowires

• www.tyndall.ie/nanotech

Manipulation of Organic Nanowires

PFO Nanowires

Assembly times Line 1 (8 wires): 600s Line 2 (5 wires): 240s

Triangle 1: 180s Triangle 2: 180s

Square 2: 180s Square 1: 540s

> 60s Average:

• www.tyndall.ie/nanotech

Mesostructure Characterization

- Minimal damage to polymer nanowires.
- Net alignment of the polymer chains parallel to the long axis of each wire.

S

2 NW mesostructure - longer wire bent to form 2 sides of a triangle.

Magnetic Manipulation of Organic Nanowires

Magnet

Magnetic extraction

Static magnetic alignment

Superparamagnetic response

• www.tyndall.ie/nanotech

9

characterization

Magnetic Manipulation of an Organic Nanowire

Polymer nanowire based nanorotor

• www.tyndall.ie/nanotech

Clocking an organic nanorotor by monitoring its intrinsic emission anisotropy

• www.tyndall.ie/nanotech

Clocking an organic nanorotor by monitoring its intrinsic emission anisotropy

sinusoidal modulation of fluorescence intensity recorded at an APD. Monitoring the wires intrinsic emission anisotropy results in a $\pi/2$

• www.tyndall.ie/nanotech **7**

Optical Trapping of Organic Nanostructures

- For a PFO NW of L = 3 μ m, ϕ = 250 nm, spring constant k: 1.1325 pN/ μ m.
- Future work

(1) nanowires/tubes interactions

- (2) k-based sorting of various nanowires values.
- (3) Large scale assembly using holographic optical trapping.

merced file/nanotech * in collaboration with Dr. Phil Jones, University College London, UK. & Prof. John Ketterson, Northwestern University, USA.

Optical Trapping of Organic Nanostructures

- F8BT nanotube is trapped vertically in a static trap then pulled into the horizontal and shown in three different orientations.
- While in trap laser induces 2-photon emission in nanotube. Not seen in PFO.
- Possible application: Nanotube based scanning probe.

_ ບ

- Developed a range of synthesis and assembly methodologies for organic nanostructures.
- Probe-based system for rapid prototyping of 1-D naostrucutre based devices/systems.
- Developed hybrid organic/inorganic nanostructures.
- Demonstration of a doped polymer nanowire as a nanoroter undergoing 360° rotation under the influence of a rotating NbFeB magnet while clocking its polarized fluorescence.
- First demonstration of polymer nanowires and nanotubes manipulated using an optical trap. •