CARBON NANOTUBE ELECTRONICS AND OPTOELECTRONICS

Phaedon Avouris
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598, USA

Carbon nanotubes (CNTs) have properties that strongly recommend them for applications in both nano- and opto-electronics. [1] Although a variety of different electronic devices based on CNTs have been demonstrated, most of the emphasis has been placed on CNT field-effect transistors (CNTFETs). These devices have in many respects characteristics superior to conventional devices. However, they also pose a set of new challenges. These include understanding the new 1D transport physics, the increased electrical noise [2], the Schottky barriers at CNT-metal contacts [3], their ambipolar character [4], the new scaling laws [5], and finding technical solutions [6] to these problems. Both single nanotube devices and multi-component single nanotube circuits [7] will be discussed. Our initial efforts to self-assemble CNTFET devices will also be discussed [8].

We are also evaluating CNTFETs as electro-optical devices. We have used ambipolar (a-) CNTFETs to simultaneously inject electrons and holes from the opposite terminal of the FET. A fraction of these recombines radiatively to produce an electrically-excited, single nanotube molecule light source [9]. Unlike conventional p-n diodes, a-CNTFETs are not doped and there is no fixed $\mathrm{p}-\mathrm{n}$ interface. Thus, the emitting region can be translated at will along a CNT channel by varying the FET gate voltage [10]. We have found that much stronger localized electroluminescence can be generated at defects or inhomogeneities that introduce potential drops [11]. The emission is the result of intra-molecular impact excitation of electron-hole pairs by the hot carriers. Localized electroluminescence provides a high brightness IR source and a novel probe of defects, charging, and inhomogeneities which are otherwise difficult to observe. The reverse process of recombination, i.e. the photogeneration of carriers in a single nanotube CNTFET channel [12], will also be discussed.
[1] For reviews see: Ph. Avouris, MRS Bulletin 29, 403 (2004); Proc. IEEE 91, 1772 (2003); P.L. McEuen, et al., IEEE Trans. Nanotechnol. 1, 78 (2002).
[2] P. G. Collins, et al. Appl. Phys. Lett. 76, 894 (2000); Y.-M. Lin et al. Nano Lett., 6, 930 (2006).
[3] Z. Chen et al., Nano Lett. 5, 1497 (2005); S. Heinze, et al., Phys. Rev. Lett. 89, 106801 (2002); J. Appenzeller, et al., Phys. Rev. Lett. 89, 126801 (2002); S. Wind et al. Appl. Phys. Lett. 80, 3817 (2002); M. Radosavljevic, et al., Appl. Phys. Lett. 83, 2435 (2003); J. Appenzeller, et al., Phys. Rev. Lett. 92, 048301 (2003); Y.-M. Lin et al. A. Javey et al. Nano Lett. 4, 1319 (2004).
[4] R. Martel, et al., Phys. Rev. Lett. 87, 256805 (2001); Y.-M. Lin et al. Nano Letters 4, 947 (2004); M. Radosavljevic, S. Heinze, J. Tersoff and Ph. Avouris, Appl. Phys. Lett. 83, 2435 (2003).
[5] S. Heinze, M. Radosavljevic, J. Tersoff, Ph. Avouris, Phys. Rev. B 68, 235418 (2003); S. Wind, J. Appenzeller, Ph. Avouris, Phys. Rev. Lett. 91, 058301 (2003); M. Radosavljevic, S. Heinze, J. Tersoff and Ph. Avouris, Appl. Phys. Lett. 83, 2435 (2003).
[6] Y.-M. Lin et al. IEEE Trans. Nanotech. 4, 481 (2005); J. Chen et al. Appl. Phys. Lett. 86, 123108 (2005).
[7] Z. Chen et al., Science 311, 1735 (2005).
[8] J.B. Hannon, A. Afzali, C. Klinke and Ph. Avouris, Langmuir 21, 8569 (2005); C. Klinke et al., Nano Lett., 6, 906 (2006).
[9] J. A. Misewich, et al., Science 300, 783 (2003); M. Freitag et al. Nano Lett. 4, 1063 (2004)
[10] M. Freitag, et al., Phys. Rev. Lett. 93, 076807 (2004); J. Tersoff et al. Appl. Phys. Lett. 86, 263108 (2005).
[11] J. Chen et al. Science 310, 1171 (2005); M. Freitag et al., Nano Lett. 6, 1425 (2006).
[12] M. Freitag et al. Nano Lett. 3, 1067 (2003); X. Qiu et al. Nano Lett. 5, 749 (2005).

