STRATEGIES FOR CONTROLLED ASSEMBLY AT THE NANOSCALE

<u>Federico Rosei</u>

Canada Research Chair in Nanostructured Organic and Inorganic Materials INRS Energie, Materiaux et Telecommunications, Université du Québec 1650 Boul. Lionel Boulet, J3X 1S2 Varennes (QC), Canada rosei@emt.inrs.ca

The bottom–up approach is emerging as a viable alternative for low cost manufacturing of nanostructured materials [1, 2]. It is based on the concept of self–assembly of suitable nanostructures on a substrate. We propose various strategies to control the assembly of nanostructures (both organic and inorganic) at the nanoscale. Our approaches include surface patterning through a nanostencil [3, 4] (i.e. a miniature shadow mask with nanoscale features); deposition on naturally patterned substrates, which take advantage of long–range reconstructions [5–7]; and control of non-covalent bonds by co-adsorption at the liquid-solid interface. The general idea is to create nanoscale features on a substrate, which will act as *surface cues* that guide the deposited material into ordered structures. We jokingly call this approach 'Playing Tetris at the Nanoscale' [9]. Finally, new experimental tools are presented to gain atomic scale insight into the surface processes that govern nucleation, growth and assembly [10]. The controlled assembly of building blocks at the nanoscale will be effective for a variety of applications, ranging from nanoelectronics to chemical and biosensors.

References:

[1] F. Rosei, J. Phys. Cond. Matt. 16, S1373 (2004).

[2] R. Otero, F. Rosei, F. Besenbacher, Ann. Rev. Phys. Chem. 57, 497 (2006).

[3] C.V. Cojocaru, C. Harnagea, F. Rosei et al., Appl. Phys. Lett. 86, 183107 (2005).

[4] C.V. Cojocaru, C. Harnagea, A. Pignolet, F. Rosei, IEEE Tr. on Nanot. in press (2006).

[5] A. Sgarlata, P.D. Szkutnik, A. Balzarotti, N. Motta, F. Rosei, Appl. Phys. Lett. 83, 4002 (2003).

[6] R. Otero, Y. Naitoh, F. Rosei et al., Angew. Chem. 43, 4092 (2004).

[7] F. Ratto, A. Locatelli, S. Fontana, S. Kharrazi, S. Ashtaputre, S.K. Kulkarni, S. Heun, F. Rosei, *Phys. Rev. Lett.* **96**, 096103 (2006).

[8] K.G. Nath, O. Ivasenko, J.A. Miwa, H. Dang, J.D. Wuest, A. Nanci, D.F. Perepichka, F. Rosei, J. Am. Chem. Soc. 128, 4212 (2006).

[9] F. Cicoira, F. Rosei, Surface Science 600, 1 (2006).

[10] F. Ratto, A. Locatelli, S. Fontana, S. Kharrazi, S. Ashtaputre, S.K. Kulkarni, S. Heun, F. Rosei, *Small* **2**, 401 (2006).

Figures:

Figure 1. (a) STM image of Self-Assembled Molecular Networks formed by deposition of 1-undecanol and TMA from heptanoic acid solution on HOPG. (b) TMA flower pattern with molecular model. (c) TMA linear pattern with molecular model.

Keynote

Figure 2. Absolute surface silicon content for a typical Ge(Si) ripened island grown at 550 °C. Sequence (A–D) is as in Figure 1. The Si concentration increases from 15% at the center of the island up to some 40% at the borders. The Si-depleted area tentatively corresponds to the partially eroded region visible in panel (B). This might explain a possible pathway towards the formation of atoll-like morphologies through the removal of the highly strained Ge-richer portions of the island's surface.