Biomolecular Tubes and Fibers

<u>Alexander Bittner</u>

"Chemical Nanostructuring and Self-Assembly"

Abt. Kern - Nanoscale Science

Max Planck Institute for Solid State Research, Stuttgart, DE

Group "Self-Assembly"

CIC Nanogune Consolider, Donostia-San Sebastian, ES

Electrospun self-assembling peptides

Nikola Malinowski Sebastian Loscher Gurvinder Singh Darya Amoli Marten Tolk Guillaume Hupin

(MPI-FKF Stuttgart etc.)

Electrospraying

Surface tension $\sigma/r \leftrightarrow E^2$ field (charges on the jet)

Electrospinning (of polymers)

Highly viscous solution of polymers; constant feed; kV potential i Viscosity n changes with radius r! But: high nyd for cone.

Evaporation of solvent: Concentration Vapour pressure

Electrospinning of monomers

Electrospinning of self-assembling di-phenylalanine (Phe-Phe, FF)

Self-assembly

Singh et al, Adv. Mat., in print

Diphenylalanine tubes

Stretching and bridging over 0.1 mm gaps

The Tobacco mosaic virus in nanoscale science

Former Bittner group (Dept. Klaus Kern)

Gabriel Baralia, Sinan Balcı, Kei Noda, Mato Knez

Stuttgart University, Dept. of Mol. Biology & Plant Virology (Holger Jeske)

Anan Kadri, Anna Müller, Christina Wege, Emil Ruff

Max Planck Institutes Stuttgart

MPI-MF: StEM (electron microscopy group) MPI-FKF: Von Klitzing group

Ulm University (Carl Krill III)

Zhenyu Wu, Chenchen Ma

Financing:

Max-Planck-Gesellschaft Deutsche Forschungsgemeinschaft Alexander von Humboldt-Gesellschaft Kompetenznetz "Funktionelle Nanostrukturen" Baden-Württemberg

Tobacco mosaic virus (TMV)

Molecular models of the virus:

K. Henrick, J.M. Thornton, Trends Biochem. Sci. 23 (1998) 358; http://pqs.ebi.ac.uk/pqs-bin/macmol.pl?filename=1vtm R. Pattanayek, G. Stubbs, J. Mol. Bio. 228 (1992) 516; K. Namba, R. Pattanayek, G. Stubbs, J. Mol. Bio. 208 (1989) 307

"Edge printing" of virus lines

Poly(dimethylsiloxane) stamp, O₂ plasma-treated

TMV adsorbed on stamp

Poly(dimethylsiloxane) stamp, O₂ plasma-treated

TMV adsorbed on stamp, low conc., blow dried → discontinuous dewetting

S. Balci et al., Adv. Mater. (2008)

"Edge printing" of virus lines

Oxidized Si

TMV lines printed on oxidized silicon wafer; width < 30 nm

Oxidized Si

S. Balci et al., Adv. Mater. (2008)

Assembly of "artificial TMV" = coat protein + RNA

The "true" nanoscale: 3 nm wires in TMV

TEM after Pd(II) activation and Ni deposition

Pd/Co deposition

 $\begin{array}{c} \mathsf{Ni}^{2+} + 2 \; e^{-} \rightarrow \mathsf{Ni} \\ 2 \; \mathsf{BH}_3 + 6 \; \mathsf{OH}^{-} \rightarrow 2 \; \mathsf{H}_3 \mathsf{BO}_3 + 3 \; \mathsf{H}_2 + 6 \; e^{-} \\ \hline \\ 3 \; \mathsf{Ni}^{2+} + 2 \; \mathsf{BH}_3 + 6 \; \mathsf{OH}^{-} \rightarrow 3 \; \mathsf{Ni} + 2 \; \mathsf{H}_3 \mathsf{BO}_3 + 3 \; \mathsf{H}_2 \end{array}$

Energy filtering TEM of 3nm wires in virions

Chemical and structural analysis on the sub-5nm scale: Pure metal (little O); for Ni oriented crystallites, [111] in wire axis

Balci et al., Electrochim. Acta 51 (2006) 6251; in preparation

CoFe alloy wire

Lithography for contacting

Extremely long Ni wires in E50Q-TMV on silicon / silicon oxide wafers with markers

The first contacted 3 nm nickel wires

Current-voltage curve

AFM topography

Extremely long Ni wires in virus-like TMV coat proteins Removal of all organic material by oxygen/hydrogen plasma Electron beam lithography, AuPd contacts Ca. 20 k Ω

Mutations and phosphate control the deposition

Pd(II) sensitization and Ni(II) electroless deposition

6.2100 His residues, Pd(II) and Ni(II) coordination: deposition on the coat

Pd(II) sensitization with phosphate traces: Ni(II) electroless deposition on coat

Ferrofluids: Shear thinning

Deposition at the ends: Metal dumbbells

6 nm gold clusters

RNA (freed by the gold particle)

by "enhancement", electroless deposition of gold on gold

Complete self-assembly of complex structures; switchable containers?

Balci et al., Angew. Chemie (2007)

TMV - goals

Ultrathin metal wires and dumbbells - "physics" (transport, magnetism)

Ferrofluids from metallized or mineralized viruses

Nanofluidics – a structurally and chemically defined 4 nm channel

Peptide / protein / polymer electrospinning -goals

Nuclear Pore Complex: Fluorescently marked transport proteins on the FG fibers

Fibers as scaffolds for magnetic nanoparticles or molecular magnets

"Spinnability" of other monomers – peptides, proteins, ... e.g. spider silk (fibroin) and amyloid fibers (prion proteins)

Control: Electrical fields? Structured collectors?

nanoGUNE

Director: J.-M. Pitarke

Design, fabrication and characterization of nanomagnetic and spintronic structures and devices.

Nanooptics

Hillenbrand

Advanced near-field optical microscopy. Nanophotonic structures and devices.

Self-assembly

Synthesis, functionalization and processing of nanomaterials. Self-assembly of complex structures.

Nanobiotechnology

Biofunctional nanoparticles, non-bio/bio interfaces, and nanobioassemblies.

Nanodevices

Nanofabrication of devices and its impact on nanobiotechnology, nanomagnetism and nanomechanics.

Nanoscale Imaging

Scanning probe microscopy. Electron microscopy.

Theory & Simulation

Theoretical methods and computational tools for the study of the nanoscale.

