Tailoring the Fermi level of the leads in molecular electronic devices

Víctor M. García Suárez Colin J. Lambert

Outline

- **1 Theoretical Method**
- **2 Preliminary calculations**
 - Energy levels
 - Transport properties of BDT
- 3 Molecules between alkali leads
 - Alkali versus gold leads
 - Length dependence
- 4 Other systems

Theoretical Method

SIESTA

- Density functional theory

$$\rho(r) \to \hat{V}_{\text{ext}}[\rho(r)] \to \hat{H}[\rho(r)] \to \Psi[\rho(r)]$$

- Pseudopotentials
 - $\hat{V}_{ion}^{PP}(r)$
- Linear combination of atomic orbitals

$$\psi_n(r) = \sum_{\mu} c_{n\mu} \phi_{\mu}(r - d_{\mu})$$

人

Theoretical Method

Smeagol

Phys. Rev. B 73, 085414 (2006) http://www.smeagol.tcd.ie

- Scattering problem

- Density matrix and transmission

$$\hat{\rho}_{MM}(r) = \frac{1}{2\pi i} \int \hat{G}_{MM}^{<}(r, E) \, \mathrm{d}E$$

$$T(E) = \operatorname{tr}[\hat{\Gamma}_{R}\hat{G}_{MM}^{R}\hat{\Gamma}_{L}\hat{G}_{MM}^{A}](E)$$

2 - Preliminary calculations

Preliminary calculations

Leads and molecules

Metallic slab

Long molecule

Hydrogen molecule used to determine a common energy origin

Preliminary calculations

Preliminary calculations

Transport properties of BDT

Transport properties of long molecules

人

Spatial projection of the density of states

人

人

 $E_{\rm F}$ in the HOMO-LUMO gap

Tailoring the Fermi level of the leads in M. E. devices

Spatial distribution of HOMO and LUMO

The LUMO is delocalized along the molecular backbone

4 - Other systems

Other systems

Exponential decay with a lower b

Conclusions

- Gold leads are not good candidates for molecular electronics devices
- It is possible to alter dramatically the alignment of Fermi level by changing the composition of the leads
- The pinning of the Fermi level at the LUMO modifies dramatically the transport properties
- New research is needed to find proper combinations of materials

