

Single and multi-excitons in core-shell semiconductor nanocrystals

Prof. Efrat Lifshitz

Dept. of Chemistry, Solid State Institute and the Russell Berrie Nanotechnology Institute, Technion, Haifa, Israel

Synthesis of PbSe nanocrystals quantum dots

Nanocyrstals quantum dots (NQDs) active in the near infra-red

Tessler, Lifshitz et al. Appl. Phys. Lett., 2006

SINGLE & MULTIEXCITONS

(gain device, solar energy, optical switch, single-photon light source)

Auger Relaxation

- 1. Fluorescence intermittency (Blinking)
- 2. Intermediate charge species $(2X \rightarrow 2X^+ + e, 2X \rightarrow X^+ + X)$
- **3. Requires transient measurements**

Looking for a solution

Core-Shell Structures

- Increase of the effective size
- Improved surface quality
- A better match of dielectric const. at the core/shell interface
- Carriers' distribution between the core and the shell

Lifshitz et al., Adv. Fn. Mat., (05),

J.Phys. Chem. B (06), Nano Lett.l, submitted (08)

Wise, Lifshitz et al., P RB (07)

$$E_{g}(T) = E_{g}(0) + \frac{\alpha T^{2}(1 - A_{1}x)}{T + \beta} + A_{2}x$$

 $\alpha_{core} = dE_g/dT = 0.20$ (core),

0.42 (core-shell) meV/K

 $\alpha_{PbSe-bulk} = 0.38 \text{ meV/K}$

 $\alpha_{PbS-bulk} = 0.50 \text{ meV/K}$

Lattice dilation

- •Surface tension
- •Electron-phonon coupling

E. Lifshitz et al., submitted (08)

Single dot spectroscopy of Type-I NQDs

FIBER-BASED micro-photoluminescence (µ-PL) setup for single dot spectroscopy at RT and 4.2 K with magnetic field up to 12 T

Fluorescence Imaging of individual NQDs

Typical phenomena in single NQDs: Spectral Diffusion (shifting) and Fluorescence Intermittency (blinking).

Auger recombination process is extremely efficient in NQD cores

100%

80%

50%

12

Summary

- Applications: Gain devices, optical switches, solar energy and medical platforms, based on single and multiexcitons in NIR active semiconductor NQDs, requiring:
- Preparation of high quality core-shell NQDs with high QE and chemical robustness,
- The ground-state exciton of core-shell structures showed a red-shift of the optical transitions, longer lifetime, narrower energy-gap at the STS spectrum, reduced surface strain [see dE_g/dT], effective increase of the NQD's volume,
- On top of all, **BLINKING FREE** process, enabled the detection of **MULTIEXCITONS** (including s- and p-shell recombination) in the μ -PL of a single core-shell NQD, generated by mild conditions (cw-laser)

Acknowledgments

Students and Postdocs

A. Kiger R.Ocsovskii V. Kloper L. Etgar E. Glinkin G. Grinbom M. Saraf M. Muellem G. Maikov Collaborators Dr. J. Konly–Olesiak, Oldenburg, Germany Al. Efros, NRL, A. Nozik (NREL) Prof. R. Tannenbaum and Prof. Y. Assaraf, Technion, Israel Dr. E. Galun and Dr. M. Sirota, ElOp, Israel Funding of this work BSF, ISF, Nofar, Bikura (ISF), Niedersachsen

Dr. M. Brumer Dr. L. Fradkin Dr. D. Cheskis Dr. A. Saschiuk

Thank you for your attention !

Projects

 Semiconductor nanocrystals quantum dots (NQDs), active in the NIR

Efrat Lifshitz (Chemistry) and Nir Tessler (EE)

Synthesis of PbSe nanocrystals (NCs): Dots, Rods, Wires & <u>Multipods</u>

Inter-valley interaction

Figure 7. Absorbance spectra (dashed line) and PL spectra (solid line) of CdTe NQDs with diameters between 3.1 and 3.8 nm.

Fluorescence imaging of individual fluorescing NQDs

Multiexciton: Historical Background

	Self assembled	Colloidal
	QDs	NQDs
Shape/	Pyramid/drop	Spherical/rods
Typical size	20 nm*5 nm	3-4 nm
Surrounding	Wetting &	Organic
	cladding layers	surfactants
	$(\varepsilon_{\infty} = 8-16)$	$(\varepsilon_{\infty} \cong 2)$
Generation	cw- or pulse-	Pulse- or q-cw
	laser ($E_{exc} < 2E_g$)	laser ($E_{exc} > 2E_g$)
Lifetime	0.5-1 nsec	1-100 psec

J. Konly-Olesiak et al. Surface Science (07), Lifshitz et al., J.Phys. Chem C, (07), and J.Phys. Chem. C. (08)

How do we create functionalized conjugate structures?

Etgar L.; Lifshitz E.; Tannenbaum R. J. Phys. Chem C, (07)

$$F_{fy} = -6\pi\eta R_{p}(v_{py} - v_{fy})$$

$$F_{fx} = -6\pi\eta R_{p}v_{px} \quad (v_{fx} = 0)$$

$$= -\frac{3\mu_{0}N_{mp}V_{mp}\chi_{mp}M_{s}^{2}R_{mag}^{4}}{\chi_{mp} + 3} \frac{(x+d)}{2((x+d)^{2} + y^{2})^{3}}$$

$$F_{my} = -\frac{3\mu_0 N_{mp} V_{mp} \chi_{mp} M_s^2 R_{mag}^4}{\chi_{mp} + 3} \frac{y}{2((x+d)^2 + y^2)^3}$$

Conjugate structure flow at 0.05ml/hr in 3.71cP fluid viscosity

