Concepts of magnetic 3D and multilayer recording

<u>D. Suess</u>, G. Winkler, J. Fidler Vienna University of Technology, Austria

A. Bashir T. Schrefl The University of Sheffield, Sheffield, UK

dieter.suess@tuwien.ac.at http://magnet.atp.tuwien.ac.at/ http://magnet.atp.tuwien.ac.at/suess/

Outlook

Introduction

- Micromagnetics
- Limits in recording

Multilayer Media

- overcoming limits
- exchange spring media

3-d recording

- Microwave assisted
- patterned media

Summary

Length and Time Scales

Micromagnetis

Magnetization Dynamics

Reversal of Single Spin

Recording simulations

Finite elements

head and soft underlayer magnetization dynamics

Fast BEM methods

hierarchical matrices for all long range interactions

Fast Poisson solvers interaction of moving parts

Recording of bit transitions

Input current

Current in the coil as function of time

Data layer blue M points down red M points up

Head field as seen by the data layer

greenzero fieldblueH points downredH points up

Recording of bit transitions

Input current

Current in the coil as function of time

Data layer blue M points down red M points up

Head field as seen by the data layer

greenzero fieldblueH points downredH points up

Growth of areal density in recording

- Moor's Law (Gordon E. Moore Co-founder Intel)
- Areal density doubles every 18 month

Trilemma

Futur Technologies

Heat assisted recording [1]

Exchange spring media [2] ECC media [3]

GMR-Leseelement

Laser

Hitzefeld

 RUIGROK, J. J. M., et al J. Appl. Phys., 87, 5398-5403, 2000.
 D Suess et al. Appl. Phys. Lett., vol. 87, Art. No. 012504, 2005. D. Suess, US- Patent, 424,859, pending.
 R Victora, IEEE Trans Magn 41 (2005) 573

Exchange Spring Media

[1] A. Aharoni, Phys. Rev. 119, 127 (1960).[2] F. B. Hagedorn, J. Appl. Phys. 41, 2491 (1970).

Ultimate Limit

 $H_a = H_s = 8 T$

Which field do I S need to switch it

The FePt grain can be switched with aribitary small fields !!!

Ultimate Limit

D. Suess, APL 89, 113105 (2006)

Energy Barrier Comparission

Conceptional Picture – Particle in potential well

- The particle needs the same thermal activation to overcome the energy well
- The force to push the particle from one minimum to the other depends on the slope of the energy landscape
- The microstructure allows to change the energy landscape

Experimental Data

- CoCrPtO bilayers
- 11 nm thick hard layer
- soft layer with different thickness

[1] H. S. Jung, E. M. T. Velu, S. S. Malhotra, U. Kwon, D. Suess, G. Bertero, IEEE Trans. Mag. 43 (2007) 2088.
[2] D. Suess, S. Eder, J. Lee, et al. Phys. Rev. B 75, (2007) 174430.

Limit of Graded media

5 – 10 Tbit/inch² Design p (media today: 512 Gbit/inch²)

Tapered head / Planer head perpendicular field (maximum) 1.8 T (minimum) 1.0T

Multilayer media	
grain size	3.2 nm
thickness	20 nm
J _s	0.8 T
K(z)	$\alpha z^{1.5}$
anisotropy	0.1MJ/m ³ to 6.6 MJ/m ³
Energy barrier	60 k _B T

Hope that the area density can be increased up to a factor 10!

Microwave assisted switching

C Thirion, W Wernsdorfer D Mailly, Nature Materials 2, 524 (2003)

External field

Raises the energy level of one magnetic state

Rotating field creates large angle precession if in resonance

Switching

If energy gain is high enough to overcome the barrier

Microwave Assisted Recording

3D Storage

- Anisotropy in each layer adjusted to match head field
- Due to different anisotropy each layer has different resonance frequency

Phase Diagrams

Recording: all up

Want to write Up-down-up-down (red-blue-red-blue)

f = 18 GHz

f = 28 GHz

Readback

All 4 states give a clear different signal 0.00020-(distance between signal almost same) 0.00015green 0.00010-**S**1 **S2** signal (a.u) 0.00005-0.00000-**S**3 red -0.00005--0.00010 -1 0 1 (S4 symmetric to S2)

S4

S2

53

6 7 8 9 10 11 12 13 14

S1

2 3

5

position (10 nm)

4

MRI (Magnetic Resonance Image)

• Object is sensed from different direction

- Using 2 heads with different sensitivity in the top and bottom layer
- Moving the head in the cross track direction

Readback – off track

Summary

Multilayer Media - Exchange Spring Media

- Superparamagnetic limit can again be extended
- Reproducible switching has fast as 5 ps
- Thermal stability and writeability can be decoupled

Multilayer recording

- 3D concepts of recording on the basis of microwave assisted recording
- Different resonance condition in different layer